Optimization of 5-flurouracil solid-lipid nanoparticles: a preliminary study to treat colon cancer
نویسندگان
چکیده
Solid lipid nanoparticle (SLNs) formulae were utilized for the release of 5-flurouracil (5-FU) inside the colonic medium for local treatment of colon cancer. SLNs were prepared by double emulsion-solvent evaporation technique (w/o/w) using triglyceride esters, Dynasan™ 114 or Dynasan™ 118 along with soyalecithin as the lipid parts. Different formulation parameters; including type of Dynasan, soyalicithin:Dynasan ratio, drug:total lipid ratio, and polyvinyl alcohol (PVA) concentration were studied with respect to particle size and drug entrapment efficiency. Results showed that formula 8 (F8) with composition of 20% 5-FU, 27% Dynasan™ 114, and 53% soyalithicin andformula 14 (20% 5-FU, 27% Dynasan™ 118, and 53% soyalithicin), which were stabilized by 0.5% PVA, as well as F10 with similar composition as F8 but stabilized by 2% PVA were considered the optimum formulae as they combined small particle size and relatively high encapsulation efficiencies. F8 had a particle size of 402.5 nm ± 34.5 with a polydispersity value of 0.005 and an encapsulation efficiency of 51%, F10 had a 617.3 ± 54.3 nm particle size with 0.005 polydispersity value and 49.1% encapsulation efficiency, whereas formula F14 showed a particle size of 343 nm ± 29 with 0.005 polydispersity, and an encapsulation efficiency of 59.09%. DSC and FTIR results suggested the existence of the lipids in the solid crystalline state. Incomplete biphasic prolonged release profile of the drug from both formulae was observed in phosphate buffer pH 6.8 as well as simulated colonic medium containing rat caecal contents. A burst release with magnitudes of 26% and 28.8% cumulative drug released were noticed in the first hour samples incubated in phosphate buffer pH 6.8 for both F8 and F14, respectively, followed by a slow release profile reaching 50% and 52% after 48 hours.
منابع مشابه
Preparation, statistical optimization and in vitro characterization of solid lipid nanoparticles as a potential vehicle for transdermal delivery of tramadol hydrochloride as a hydrophilic Compound
As encapsulation of hydrophilic drugs in the solid lipid nanoparticles (SLNs) is still a challenging issue, the aim of this study was to prepare SLNs containing tramadol hydrochloride as a hydrophilic compound.The SLNs were prepared using glycerol monostearate (GMS), soy lecithin and tween 80 by double emulsification-solvent evaporation technique. The nanoparticles were optimized through a cent...
متن کاملInternational Journal of Pharma and Bio Sciences PREPARATION AND OPTIMIZATION OF PROCESS VARIABLES OF NANOPARTICLES CONTANING ANTI CANCER DRUG
The objective of the present study is to formulate nanoparticles that contain 5Flurouracil, an anticancer drug and optimization for chemical properties, drug concentration, polymer concentration, cross-linking agent and stirring speed. Nanoparticles of 5-Flurouracil were formulated using chitosan polymer and pregelated Sodium alginate by Ionotropic pregelation method. Calcium chloride was also ...
متن کاملThe efficacy of Isotretinoin-loaded solid lipid nanoparticles in comparison to Isotrex® on acne treatment
Topical retinoids are considered as the first line therapy in the treatment of acne vulgaris, but they are associated with cutaneous irritation. In this study, isotretinoin-loaded solid lipid nanoparticles(IT-SLN) were prepared to treat the mild to moderate acne. Also using IT-SLN would minimize IT adverse effects in comparison to commercial product, Isotrex®. This study was conducted to prepar...
متن کاملFormulation of curcumin-loaded solid lipid nanoparticles produced by fatty acids coacervation technique.
Curcumin (CU) loaded solid lipid nanoparticles (SLNs) of fatty acids (FA) were prepared with a coacervation technique based on FA precipitation from their sodium salt micelles in the presence of polymeric non-ionic surfactants. Myristic, palmitic, stearic, and behenic acids, and different polymers with various molecular weights and hydrolysis grades were employed as lipid matrixes and stabilise...
متن کاملPreparation, Statistical Optimization and In-vitro Characterization of a Dry Powder Inhaler (DPI) Containing Solid Lipid Nanoparticles Encapsulating Amphotericin B: Ion Paired Complexes with Distearoyl Phosphatidylglycerol
The aim of this study was to prepare dry powder inhalers (DPIs) containing amphotericin B-loaded solid lipid nanoparticles (AMB-SLNs) as an alternative approach for prevention of pulmonary aspergillosis. For solubilizing AMB in small amounts of organic solvents ion paired complexes were firstly formed by establishing electrostatic interaction between AMB and distearoyl phosphatidylglycerol (DSP...
متن کامل